Skip to main content

Sale until 1 Feb: Up to 30% off selected books.

CRC Press, Taylor & Francis Group

Data Mining and Exploration : From Traditional Statistics to Modern Data Science

No reviews yet
Product Code: 9780367721510
ISBN13: 9780367721510
Condition: New
$76.11
This book will introduce both conceptual and procedural aspects of cutting-edge data science methods, such as dynamic data visualization, artificial neural networks, ensemble methods, and text mining. There are at least two unique elements that can set the book apart from its rivals. Most students in social sciences, engineering, and business took at least one class in introductory statistics before learning data science. However, usually these courses do not discuss the similarities and differences between these two schools of thought, and as a result learners are disoriented by this seemingly drastic paradigm shift. In reaction, some traditionalists reject data science altogether while some beginning data analysts employ data mining tools as a black box", without a comprehensive view of the foundational differences between traditional and modern methods (e.g. dichotomous thinking vs. pattern recognition, confirmation vs. exploration, single method vs. triangulation, single sample vs. cross-validation...etc.). To remediate this problem, this book will provide the readers with the details of the similarities and differences between classical methods and data science, as well as the path for the transition (e.g. from p value to LogWorth, from resampling to ensemble methods, from content analysis to text mining...etc.)"--


Author: Chong Ho Yu
Publisher: CRC Press, Taylor & Francis Group
Publication Date: Oct 04, 2024
Number of Pages: NA pages
Language: English
Binding: Paperback
ISBN-10: 0367721511
ISBN-13: 9780367721510

Data Mining and Exploration : From Traditional Statistics to Modern Data Science

$76.11
 
This book will introduce both conceptual and procedural aspects of cutting-edge data science methods, such as dynamic data visualization, artificial neural networks, ensemble methods, and text mining. There are at least two unique elements that can set the book apart from its rivals. Most students in social sciences, engineering, and business took at least one class in introductory statistics before learning data science. However, usually these courses do not discuss the similarities and differences between these two schools of thought, and as a result learners are disoriented by this seemingly drastic paradigm shift. In reaction, some traditionalists reject data science altogether while some beginning data analysts employ data mining tools as a black box", without a comprehensive view of the foundational differences between traditional and modern methods (e.g. dichotomous thinking vs. pattern recognition, confirmation vs. exploration, single method vs. triangulation, single sample vs. cross-validation...etc.). To remediate this problem, this book will provide the readers with the details of the similarities and differences between classical methods and data science, as well as the path for the transition (e.g. from p value to LogWorth, from resampling to ensemble methods, from content analysis to text mining...etc.)"--


Author: Chong Ho Yu
Publisher: CRC Press, Taylor & Francis Group
Publication Date: Oct 04, 2024
Number of Pages: NA pages
Language: English
Binding: Paperback
ISBN-10: 0367721511
ISBN-13: 9780367721510
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day