Humana
Computational Methods for 3D Genome Analysis
Product Code:
9781071641354
ISBN13:
9781071641354
Condition:
New
$260.20
This volume covers the latest methods and analytical approaches used to study the computational analysis of three-dimensional (3D) genome structure. The chapters in this book are organized into six parts. Part One discusses different NGS assays and the regulatory mechanism of 3D genome folding by SMC complexes. Part Two presents analysis workflows for Hi-C and Micro-C in different species, including human, mouse, medaka, yeast, and prokaryotes. Part Three covers methods for chromatin loop detection, sub-compartment detection, and 3D feature visualization. Part Four explores single-cell Hi-C and the cell-to-cell variability of the dynamic 3D structure. Parts Five talks about the analysis of polymer modelling to simulate the dynamic behavior of the 3D genome structure, and Part Six looks at 3D structure analysis using other omics data, including prediction of 3D genome structure from the epigenome, double-strand break-associated structure, and imaging-based 3D analysis using seqFISH. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and tools, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Computational Methods for 3D Genome Analysis: Methods and Protocols is a valuable resource for researchers interested in using computational methods to further their studies in the nature of 3D genome organization.
Author: Ryuichiro Nakato |
Publisher: Humana |
Publication Date: Sep 17, 2024 |
Number of Pages: NA pages |
Language: English |
Binding: Hardcover |
ISBN-10: 1071641352 |
ISBN-13: 9781071641354 |
Computational Methods for 3D Genome Analysis
$260.20
This volume covers the latest methods and analytical approaches used to study the computational analysis of three-dimensional (3D) genome structure. The chapters in this book are organized into six parts. Part One discusses different NGS assays and the regulatory mechanism of 3D genome folding by SMC complexes. Part Two presents analysis workflows for Hi-C and Micro-C in different species, including human, mouse, medaka, yeast, and prokaryotes. Part Three covers methods for chromatin loop detection, sub-compartment detection, and 3D feature visualization. Part Four explores single-cell Hi-C and the cell-to-cell variability of the dynamic 3D structure. Parts Five talks about the analysis of polymer modelling to simulate the dynamic behavior of the 3D genome structure, and Part Six looks at 3D structure analysis using other omics data, including prediction of 3D genome structure from the epigenome, double-strand break-associated structure, and imaging-based 3D analysis using seqFISH. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and tools, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Computational Methods for 3D Genome Analysis: Methods and Protocols is a valuable resource for researchers interested in using computational methods to further their studies in the nature of 3D genome organization.
Author: Ryuichiro Nakato |
Publisher: Humana |
Publication Date: Sep 17, 2024 |
Number of Pages: NA pages |
Language: English |
Binding: Hardcover |
ISBN-10: 1071641352 |
ISBN-13: 9781071641354 |