
Springer
Multistrategy Learning: A Special Issue of Machine Learning
Product Code:
9781461364054
ISBN13:
9781461364054
Condition:
New
$232.16

Multistrategy Learning: A Special Issue of Machine Learning
$232.16
Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined.
Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community.
Multistrategy Learning contains contributions characteristic of the current research in this area.
Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community.
Multistrategy Learning contains contributions characteristic of the current research in this area.
Author: Ryszard S. Michalski |
Publisher: Springer |
Publication Date: Oct 08, 2012 |
Number of Pages: 155 pages |
Binding: Paperback or Softback |
ISBN-10: 1461364051 |
ISBN-13: 9781461364054 |