Skip to main content

Springer

Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach

No reviews yet
Product Code: 9781461368427
ISBN13: 9781461368427
Condition: New
$61.47

Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach

$61.47
 
Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen- tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.


Author: L. a. Lambe
Publisher: Springer
Publication Date: Nov 23, 2013
Number of Pages: 300 pages
Binding: Paperback or Softback
ISBN-10: 1461368421
ISBN-13: 9781461368427
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day