Skip to main content

Birkhäuser

Geometric Theory of Foliations

No reviews yet
Product Code: 9781468471496
ISBN13: 9781468471496
Condition: New
$190.78

Geometric Theory of Foliations

$190.78
 
Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X- curl X - 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu- mulate asymptotically on the compact leaf. Further, the foliation is C"".


Author: C??ar Camacho
Publisher: Birkhauser
Publication Date: Jun 26, 2013
Number of Pages: 206 pages
Binding: Paperback or Softback
ISBN-10: 146847149X
ISBN-13: 9781468471496
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day