Skip to main content

CRC Press

Measure and Integral: An Introduction to Real Analysis, Second Edition

No reviews yet
Product Code: 9781498702898
ISBN13: 9781498702898
Condition: New
$149.41

Measure and Integral: An Introduction to Real Analysis, Second Edition

$149.41
 

Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content.

Published nearly forty years after the first edition, this long-awaited Second Edition also:

  • Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p
  • Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case
  • Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of H?lder continuous functions and the space of functions of bounded mean oscillation
  • Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension
  • Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient
  • Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincar?-Sobolev inequalities, including endpoint cases
  • Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables
  • Includes many new exercises not present in the first edition

This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.




Author: Richard L. Wheeden
Publisher: CRC Press
Publication Date: Jan 01, 2015
Number of Pages: 536 pages
Binding: Hardback or Cased Book
ISBN-10: 1498702899
ISBN-13: 9781498702898
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day