Skip to main content

Sale until 1 Feb: Up to 30% off selected books.

Createspace Independent Publishing Platform

Air-Sea Interactions And Deep Convection In The Labrador Sea (Defense)

No reviews yet
Product Code: 9781523489473
ISBN13: 9781523489473
Condition: New
$13.38
Deep convection in the oceans, particularly at high latitudes, plays an important role in the climate systems of the world's oceans and atmosphere. This study was conducted to examine atmospheric forcing effects on deep convection in the Labrador Sea. The Naval Postgraduate School one dimensional ocean mixed layer model was applied to the Labrador Sea from February 12 to March 10, 1997. The model was initialized and forced with oceanographic and atmospheric data collected onboard the RN Knorr during the first field program of the Labrador Sea Deep Convection Experiment. An ocean mixed layer depth close to 1300 m was predicted and verified using the observed data. A sensitivity study was conducted using deviations from observations as input to determine how variations in atmospheric forcing could lead to the observed and even deepened ocean mixed layer. Observed Conductivity, temperature and depth (CTD) data were used to verify the model's spatial and temporal predictions of mixed layer temperature, salinity and depth. Model predicted mixed layer depths were usually slightly deeper than those observed. The final model output predicted temperature rather accurately, but model predicted salinity values were consistently low. A variety of sensitivity studies gave new insight to the individual influences of surface fluxes, momentum stresses, precipitation, salinity and individual storm variations to the mixed layer temperature, salinity and depth of the Labrador Sea.

Author: Naval Postgraduate Naval Postgraduate School, Penny Hill Press Inc
Publisher: CreateSpace Independent Publishing Platform
Publication Date: Jan 20, 2016
Number of Pages: 76 pages
Language: English
Binding: Paperback
ISBN-10: 1523489472
ISBN-13: 9781523489473

Air-Sea Interactions And Deep Convection In The Labrador Sea (Defense)

$13.38
 
Deep convection in the oceans, particularly at high latitudes, plays an important role in the climate systems of the world's oceans and atmosphere. This study was conducted to examine atmospheric forcing effects on deep convection in the Labrador Sea. The Naval Postgraduate School one dimensional ocean mixed layer model was applied to the Labrador Sea from February 12 to March 10, 1997. The model was initialized and forced with oceanographic and atmospheric data collected onboard the RN Knorr during the first field program of the Labrador Sea Deep Convection Experiment. An ocean mixed layer depth close to 1300 m was predicted and verified using the observed data. A sensitivity study was conducted using deviations from observations as input to determine how variations in atmospheric forcing could lead to the observed and even deepened ocean mixed layer. Observed Conductivity, temperature and depth (CTD) data were used to verify the model's spatial and temporal predictions of mixed layer temperature, salinity and depth. Model predicted mixed layer depths were usually slightly deeper than those observed. The final model output predicted temperature rather accurately, but model predicted salinity values were consistently low. A variety of sensitivity studies gave new insight to the individual influences of surface fluxes, momentum stresses, precipitation, salinity and individual storm variations to the mixed layer temperature, salinity and depth of the Labrador Sea.

Author: Naval Postgraduate Naval Postgraduate School, Penny Hill Press Inc
Publisher: CreateSpace Independent Publishing Platform
Publication Date: Jan 20, 2016
Number of Pages: 76 pages
Language: English
Binding: Paperback
ISBN-10: 1523489472
ISBN-13: 9781523489473
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day