Springer International Publishing
Essentials of Excel VBA, Python, and R : Volume I: Financial Statistics and Portfolio Analysis
Product Code:
9783031142383
ISBN13:
9783031142383
Condition:
New
$127.25
This advanced textbook for business statistics teaches statistical analyses and research methods utilizing business case studies and financial data, with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python and R, so that readers will be better prepared for the current industry. This first volume is designed for advanced courses in financial statistics, investment analysis and portfolio management. It is also a comprehensive reference for active statistical finance scholars and business analysts who are looking to upgrade their toolkits. Readers can look to the second volume for dedicated content on financial derivatives, risk management, and machine learning.
Author: John Lee, Cheng-Few Lee |
Publisher: Springer International Publishing |
Publication Date: Jan 04, 2024 |
Number of Pages: NA pages |
Language: English |
Binding: Paperback |
ISBN-10: 3031142381 |
ISBN-13: 9783031142383 |
Essentials of Excel VBA, Python, and R : Volume I: Financial Statistics and Portfolio Analysis
$127.25
This advanced textbook for business statistics teaches statistical analyses and research methods utilizing business case studies and financial data, with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python and R, so that readers will be better prepared for the current industry. This first volume is designed for advanced courses in financial statistics, investment analysis and portfolio management. It is also a comprehensive reference for active statistical finance scholars and business analysts who are looking to upgrade their toolkits. Readers can look to the second volume for dedicated content on financial derivatives, risk management, and machine learning.
Author: John Lee, Cheng-Few Lee |
Publisher: Springer International Publishing |
Publication Date: Jan 04, 2024 |
Number of Pages: NA pages |
Language: English |
Binding: Paperback |
ISBN-10: 3031142381 |
ISBN-13: 9783031142383 |