Skip to main content

Sale until 31st Match: Up to 30% off selected books.

Springer

Abelian Varieties over the Complex Numbers : A Graduate Course

No reviews yet
Product Code: 9783031444463
ISBN13: 9783031444463
Condition: New
$91.45
This textbook offers an introduction to abelian varieties, a rich topic of central importance to algebraic geometry. The emphasis is on geometric constructions over the complex numbers, notably the construction of important classes of abelian varieties and their algebraic cycles. The book begins with complex tori and their line bundles (theta functions), naturally leading to the definition of abelian varieties. After establishing basic properties, the moduli space of abelian varieties is introduced and studied. The next chapters are devoted to the study of the main examples of abelian varieties: Jacobian varieties, abelian surfaces, Albanese and Picard varieties, Prym varieties, and intermediate Jacobians. Subsequently, the Fourier?Mukai transform is introduced and applied to the study of sheaves, and results on Chow groups and the Hodge conjecture are obtained. This book is suitable for use as the main text for a first course on abelian varieties, for instance as a second graduate course in algebraic geometry. The variety of topics and abundant exercises also make it well suited to reading courses. The book provides an accessible reference, not only for students specializing in algebraic geometry but also in related subjects such as number theory, cryptography, mathematical physics, and integrable systems.


Author: Herbert Lange
Publisher: Springer
Publication Date: Feb 23, 2024
Number of Pages: NA pages
Language: English
Binding: Hardcover
ISBN-10: 3031444469
ISBN-13: 9783031444463

Abelian Varieties over the Complex Numbers : A Graduate Course

$91.45
 
This textbook offers an introduction to abelian varieties, a rich topic of central importance to algebraic geometry. The emphasis is on geometric constructions over the complex numbers, notably the construction of important classes of abelian varieties and their algebraic cycles. The book begins with complex tori and their line bundles (theta functions), naturally leading to the definition of abelian varieties. After establishing basic properties, the moduli space of abelian varieties is introduced and studied. The next chapters are devoted to the study of the main examples of abelian varieties: Jacobian varieties, abelian surfaces, Albanese and Picard varieties, Prym varieties, and intermediate Jacobians. Subsequently, the Fourier?Mukai transform is introduced and applied to the study of sheaves, and results on Chow groups and the Hodge conjecture are obtained. This book is suitable for use as the main text for a first course on abelian varieties, for instance as a second graduate course in algebraic geometry. The variety of topics and abundant exercises also make it well suited to reading courses. The book provides an accessible reference, not only for students specializing in algebraic geometry but also in related subjects such as number theory, cryptography, mathematical physics, and integrable systems.


Author: Herbert Lange
Publisher: Springer
Publication Date: Feb 23, 2024
Number of Pages: NA pages
Language: English
Binding: Hardcover
ISBN-10: 3031444469
ISBN-13: 9783031444463
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day