Springer
Introduction to Data Science : A Python Approach to Concepts, Techniques and Applications
Product Code:
9783031489556
ISBN13:
9783031489556
Condition:
New
$55.66
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.
Author: Laura Igual, Santi Seguí |
Publisher: Springer |
Publication Date: Apr 13, 2024 |
Number of Pages: NA pages |
Language: English |
Binding: Paperback |
ISBN-10: 3031489551 |
ISBN-13: 9783031489556 |
Introduction to Data Science : A Python Approach to Concepts, Techniques and Applications
$55.66
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.
Author: Laura Igual, Santi Seguí |
Publisher: Springer |
Publication Date: Apr 13, 2024 |
Number of Pages: NA pages |
Language: English |
Binding: Paperback |
ISBN-10: 3031489551 |
ISBN-13: 9783031489556 |