Skip to main content

Springer

Integrable Systems in the Realm of Algebraic Geometry

No reviews yet
Product Code: 9783540423379
ISBN13: 9783540423379
Condition: New
$61.47

Integrable Systems in the Realm of Algebraic Geometry

$61.47
 
2. Divisors and line bundles ........................ 99. 2.1. Divisors .............................. 99. 2.2. Line bundles ............................ 100. 2.3. Sections of line bundles ....................... 101. 2.4. The Riemann-Roch Theorem ..................... 103. 2.5. Line bundles and embeddings in projective space ............ 105. 2.6. Hyperelliptic curves ......................... 106. 3. Abelian varieties ............................ 108. 3.1. Complex tori and Abelian varieties .................. 108. 3.2. Line bundles on Abelian varieties ................... 109. 3.3. Abelian surfaces .......................... 111. 4. Jacobi varieties ............................. 114. 4.1. The algebraic Jacobian ....................... 114. 4.2. The analytic/transcendental Jacobian ................. 114. 4.3. Abel's Theorem and Jacobi inversion ................. 119. 4.4. Jacobi and Kummer surfaces ..................... 121. 5. Abelian surfaces of type (1,4) ....................... 123. 5.1. The generic case .......................... 123. 5.2. The non-generic case ........................ 124. V. Algebraic completely integrable Hamiltonian systems ........ 127. 1. Introduction .............................. 127. 2. A.c.i. systems ............................. 129. 3. Painlev analysis for a.c.i, systems .................... 135. 4. The linearization of two-dkmensional a.e.i, systems ............. 138. 5. Lax equations ............................. 140. VI. The Mumford systems ..................... 143. 1. Introduction .............................. 143. 2. Genesis ................................ 145. 2.1. The algebra of pseudo-differential operators .............. 145. 2.2. The matrix associated to two commuting operators ........... 146. 2.3. The inverse construction ....................... 150. 2.4. The KP vector fields ........................ 152. ix 3. Multi-Hamiltonian structure and symmetries ................ 155. 3.1. The loop algebra 9(q ........................ 155. 3.2. Reducing the R-brackets and the vector field ............. 157. 4. The odd and the even Mumford systems .................. 161. 4.1. The (odd) Mumford system ..................... 161. 4.2. The even Mumford system ...................... 163.


Author: Pol Vanhaecke
Publisher: Springer
Publication Date: Jul 31, 2001
Number of Pages: 264 pages
Binding: Paperback or Softback
ISBN-10: 3540423370
ISBN-13: 9783540423379
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day