Skip to main content

LAP Lambert Academic Publishing

Low power BIST for VLSI Digital Circuits

No reviews yet
Product Code: 9786207468379
ISBN13: 9786207468379
Condition: New
$92.00
$89.18
Sale 3%

Low power BIST for VLSI Digital Circuits

$92.00
$89.18
Sale 3%
 
In recent years, power consumption gained importance as one of the major concerns of VLSI designers. The primary driving factor for this trend has been the diffusion of battery powered portable computing devices and wireless communication systems. For this new class of battery powered devices average power consumption is critical, since it determines battery life. A strong pressure for reducing power dissipation is also coming from producers of high-end systems. In digital VLSI, the circuits using irreversible logic will have more amount of power dissipation due to unequal number of inputs and outputs. Due to these mismatching number of inputs and outputs an amount, KTln2 joules of energy loss occurs for each bit of information loss, where K is Boltzmann's constant (1.38 x 10-23 joules/Kelvin) and T is the absolute temperature in 0K. An alternative way to have low power in VLSI is making use of reversible logic. Reversible logic reduces power dissipation by having equal number of inputs and outputs without any loss of bit information. Therefore, in this work various digital circuits such as decoder, encoder, priority encoder, multiplexer, demultiplexer, ALU and multipliers.


Author: Yarlagadda Syamala
Publisher: LAP Lambert Academic Publishing
Publication Date: Feb 29, 2024
Number of Pages: 248 pages
Binding: Paperback or Softback
ISBN-10: 6207468376
ISBN-13: 9786207468379
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day