Skip to main content

Sale until 31st Match: Up to 30% off selected books.

World Scientific Publishing Company

Oscillator and Pendulum with a Random Mass

No reviews yet
Product Code: 9789814630740
ISBN13: 9789814630740
Condition: New
$88.40
Stochastic descriptions of a harmonic oscillator can be obtained by adding additive noise, or/and three types of multiplicative noise: random frequency, random damping and random mass. The first three types of noise were intensively studied in many published articles. In this book the fourth case, that of random mass, is considered in the context of the harmonic oscillator and its immediate nonlinear generalization -- the pendulum. To our knowledge it is the first book fully dedicated to this problem. Two interrelated methods, the Langevin equation and the Fokker-Planck equations, as well as the Lyapunov stability method are used for the mathematical analysis. After a short introduction, the two main parts of the book describe the different properties of the random harmonic oscillator and the random pendulum with random masses. As an example, the stochastic resonance is studied, where the noise plays an unusual role, increasing the applied weak periodic signal, and also the vibration resonance in dynamic systems, where the role of noise is played by the second high-frequency periodic signal. First and second averaged moments have been calculated for a system with different types of additive and multiplicative noises, which define the stability of a system. The calculations have been extended to two multiplicative noises and to quadratic noise. This book is useful for students and scientists working in different fields of statistical physics.


Author: M. Gitterman
Publisher: World Scientific Publishing Company
Publication Date: Mar 04, 2015
Number of Pages: 146 pages
Language: English
Binding: Hardcover
ISBN-10: 9814630748
ISBN-13: 9789814630740

Oscillator and Pendulum with a Random Mass

$88.40
 
Stochastic descriptions of a harmonic oscillator can be obtained by adding additive noise, or/and three types of multiplicative noise: random frequency, random damping and random mass. The first three types of noise were intensively studied in many published articles. In this book the fourth case, that of random mass, is considered in the context of the harmonic oscillator and its immediate nonlinear generalization -- the pendulum. To our knowledge it is the first book fully dedicated to this problem. Two interrelated methods, the Langevin equation and the Fokker-Planck equations, as well as the Lyapunov stability method are used for the mathematical analysis. After a short introduction, the two main parts of the book describe the different properties of the random harmonic oscillator and the random pendulum with random masses. As an example, the stochastic resonance is studied, where the noise plays an unusual role, increasing the applied weak periodic signal, and also the vibration resonance in dynamic systems, where the role of noise is played by the second high-frequency periodic signal. First and second averaged moments have been calculated for a system with different types of additive and multiplicative noises, which define the stability of a system. The calculations have been extended to two multiplicative noises and to quadratic noise. This book is useful for students and scientists working in different fields of statistical physics.


Author: M. Gitterman
Publisher: World Scientific Publishing Company
Publication Date: Mar 04, 2015
Number of Pages: 146 pages
Language: English
Binding: Hardcover
ISBN-10: 9814630748
ISBN-13: 9789814630740
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day