Skip to main content

Springer

Respiratory Biomechanics: Engineering Analysis of Structure and Function

No reviews yet
Product Code: 9781461280170
ISBN13: 9781461280170
Condition: New
$118.37

Respiratory Biomechanics: Engineering Analysis of Structure and Function

$118.37
 
This proceedings volume brings together the invited papers from the Respiratory Biomechanics Symposium of the First World Congress of Biomechanics held in La Jolla, California from August 3D-September 4, 1990. The respiratory system offers many opportunities to apply the different branches of traditional mechanics. Tissue defonnations and stresses during lung expansion can be analyzed using the principles of solid mechanics. Fluid mechanical problems in the lung are unique. There is the matched distribution of two fluids, gas and blood, in two beautifully intertwined, branched conduit systems. The reversing flow of the gas phase presents different problems than the pulsatile flow of the non-Newtonian fluid that is the blood. On the smaller scale, there is the flux of fluids and solutes across the capillary membrane. Finally, there is the problem of coupling fluid and solid mechanics to understand the overall behavior of the respiratory system. In this symposium, we have chosen to address the basic processes that contribute to the gas and fluid exchange functions of the lung. Section 1, Lung Tissue Mechanics, provides an historical background and, then, presents more recent work on the structure of the lung parenchyma, the mechanics of the tissue, and the effects of the bounding membrane, the visceral pleura.


Author: Mary A. F. Epstein
Publisher: Springer
Publication Date: Sep 27, 2011
Number of Pages: 201 pages
Binding: Paperback or Softback
ISBN-10: 1461280176
ISBN-13: 9781461280170
 

Customer Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Faster Shipping

Delivery in 3-8 days

Easy Returns

14 days returns

Discount upto 30%

Monthly discount on books

Outstanding Customer Service

Support 24 hours a day